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Hydrodynamic effects in phase separation: An explicit solution approach
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We study the influence of hydrodynamic modes on phase separation by modeling pure-phase domains with
kinks. The velocity field, determined adiabatically in terms of the thermodynamic source, describes a steady
state compressible flow. We consider spherical, columnar, and disklike domains. In the former two cases, we
obtain crossover from the~ 1/R? law to theR~t law as in the incompressible case. The growth of columnar
domains is dominated by hydrodynamics, while for spherical domains we find competition between hydrody-
namics and particle diffusion: this competition determines a threshold in size for the fluctuations, i.e., only
large enough fluctuations can initiate the spinodal decomposition. We finally study disklike domains in a
guasi-two-dimensional system and obtain, for small radii, the growthRaV\ll[R?’ln(A/R)], while for large
radii R~ 1 R?In(A/R)]. We find that stable microdomains can be formed, whose size is fixed by the thickness
of the lamella and by the parameters of the flui@.g., viscosity, transport coefficient, etc.
[S1063-651%97)02712-9

PACS numbg(s): 05.70.Fh, 05.70.Ln, 64.60.My, 64.79

I. INTRODUCTION show that, in the absence of a forcing term at the boundary,

a characteristic radius separates collapsing domains from ex-

The influence of hydrodynamics on phase separation ifpanding ones. The crossover from a Lifshitz-Slyozov behav-
binary mixtures has been the object of numeridat5] as  ior to the hydrodynamic behavior is also obtained. In Sec. IV
well as analytical works based on dimensional and scalingve study a columnar defect; in the limit of infinite system
analysis[6,7]. We approach the problem in terms of explicit Only the hydrodynamic contribution survives and a stable
analytic solutions of the dynamics of the order parametertime-dependent solution is found. This solution is sustained
representing the concentration, and the fluid velocity. OuPnly by the forcing at the boundary: in the absence of forcing

approach is an extension of the Lifshitz-Slyozov analjg]s 2!l columnar defects grow with a linear law. In Sec. V we
to include the hydrodynamic contribution: we obtain an evo-ConS_Ider a disk in aqugsrtwo-d|mens_|on}_alam|nar system:
lution equation for the size of an isolated pure-phase domai ve find here a deviation from the Lifshitz-Slyozov growth
The velocity field is determined in the adiabatic approxima- or small domainga slower growthand for large domains a

) : . . logarithmic correction to the Lifshitz-Slyozov law. More in-
tion, meaning that the viscous relaxation occurs over short

i ith t 10 the i | £ oh i erestingly perhaps, we determine a characteristic radius, de-
Imes with respect to the imes scales of phase separation. {fi, ,jent on the thickness of the lamella and on the viscosity,

this way we disregard memory effects; in general the Velocj e re the domains stabilize. If one disregards the interaction
ity of the quu_JI is (_:0n3|ste_nt with the_stat|onary flow _|mposed between the domains, the system separates into a pattern of
by the quasistatic chemical potential. The dynamics of thgyicrodomains. Section VI is dedicated to some conclusions
interface results from the competition between the diffusionyng to comparison with previous works.

dominated dynamicésingle type pure-phase molecules, say

B, diffuse within the melt towards the domaiand the glo-

bal motion of the melt, described by the hydrodynamic Il. BASIC EQUATIONS

modes. We consider an off-critical quench, i.e., the melt is ] ] ] ) ] )
assumed to be close to the equilibrium concentration of Ph_ase—separatlon_dynamlqs of binary f|UIdS.WI||. be studied
phaseA: the free energy density is then approximated with ahere in terms of explicit solu'tlons, based on kinklike model-
quadratic term. It will be shown that as a consequence th#'d Of the pure-phase domains. o
transverse part of the velocity decouples from the chemical Our starting point is the so-called model [9], in its
potential. Our solutions refer to potential, compressibledeterministic version:

flows; we discuss in the following how the kinetic ordering
is influenced by relaxing the incompressibility condition.

The paper is organized as follows. In Sec. Il we introduce PR N B - 1 s -
) . . . . —+-Vv|==Vp+gAv+|{+57]|V(V.
the basic equations and discuss the separation of the Navier- Pol 5t (v-V)v p+mivt|¢ 37 (V-v)
Stokes equations in the static limit in longitudinal and trans- R
versal parts. In Sec. Ill we consider a spherical domain and —NeVp, (1)
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Here ¢(x,t) is a scalar field describing the concentration of Aﬁ=x¢ﬁﬂ+ﬁp.
one of the two components(X,t) is the fluid velocity,pq

the average mass density(x,t) the pressure, and[¢] the ~ Starting from the solutions ofx=0, valid in the static
chemical potential. The coefficients and ¢ are the shear limit, we will assume kinklike geometries and determine a
and bulk viscosity) the coupling of the concentration with dynamical equation for the size of such kinks in a quasistatic
the velocity, andVl a transport coefficient, here assumed to@PProach. The procedure follows the lines of the derivation
be constant. We study the scaling behavior during phas@iven by Langef10] of the seminal paper by Lifshitz and
separation in the deterministic case: it was numerically>1Y0Z0V[8]-

shown that noise is irrelevant in this regime d=2 and

d=3 [3]. To the best of our knowledge, the noise term gen- . SPHERICAL SYMMETRY

erates a peculiar scaling in monolayers in the coalescence We first id herical d in havi i
regime[7], which is far from the present approach. e lirst consider a spherical domain having radtus a

We examine time scales of the order of the phasepure phase, saB, surrounded by the mixed phase, assumed

separation dynamics and large with respect to the transied? P& .close to theA-phase equilibrium concentratios,
viscous relaxation times of the velocity field: in other words, Recalling — that w(x,t)=6F[¢]/de(x,t), we assume
we study the system in the adiabatic approximationu(x,t)=V"(c,)¢(x,t), whereV(¢) is the potential contri-

(d/dt)v =0, where the velocity “instantaneously” follows bution to the free energy density.

the dynamics of the order parameter. This approximation is The solution ofA »=0 is given, forr >R, by
particularly reasonable in proximity to the phase separation,
where the system undergoes critical slowing down, but here
we will use it in studying the evolution after quenching be-
low the transition temperature. The experimental relevance
of this adiabatic regime has been discussed by Koga angith boundary conditions
Kawasaki[4], in their numerical study of spinodal decompo-

R
@(r):asF"'bSv (2

sition. c,+oc, ifr=R
It is useful to project the residual Navier-Stokes equation = e
. o C,tToc, ifr=A,
into the transverse and longitudinal components
(v=vr+v, V-v7=0,VXy =0): whereA is the radius of the system. The quantfly,, is the
R R R R excess concentration at the boundary of the domain, given by
—Vp+7*Av —N(eVu) =0, the Gibbs-Thompson relation:
> > P dO
nAvt—AeVu)r=0, 5Ca=2EAC, 3

wheren* = 3 7+ {. We point out that whenever the chemical here Ac— dom 0TI (AC)? bei h ;
potential  is a polynomial ing, u=3¥_,a;¢' (thisisa W ere €=Cp Ca: 0= IX ,( ¢)%, o being the sur ace.
reasonable approximation when the melt is close to an equfénsion andy the susceptibility. From the boundary condi-
librium configuration, so that one can disregard ginthe tions one determines the coefficients of the static solution:
kinetic term), the two equations decouple: A

aszﬁ(éca— 5COC), (4)

k .
- > = | .
n*AUL:Vp-F)\V 21 mai(lerl),

R

b ~A-R

o oc, . (5)

s=Ct 75
- - A—-R
77AUT:0.

We solve the equations fer under the assumptioriép=0

Notice that if one enforces the incompressibility condition do-—G:
vT=V.

- - . . . an
V-v=0, one simply ends up with a solution for the pressure

as a function of the potential, whilzéT is completely inde- Av=\f

pendent of the chemical potential. In such a case the problem '

reduces to one for a scalar in a given external static velocity

field with appropriate boundary conditions at infinity and at i 1 -

the interface. Here, we disregard the variation in space of 7*

pressure and include the effect of the source in the solution

for the irrotational fieldv, , which will be uniquely deter- Notice thate(r) parametrically depends on the radius of the

mined by imposing’, =0 on the boundary of the system. sphereR. From the symmetry and the equatiam.=0, one
For more generak one can again determine the velocity has

field by simply inverting the Laplacian; indeed, by setting . R . )

U= n*v_+ nus one obtains f(n=f(ra;, v(r)=v(na,

(6)
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R2 1 Notice that ¢ ) chemis always opposite to the gradient of
f(r)=®(r—R)—[,u(r)]r’=R+—2go(r), hence the bubble growth is regulated by the velocityBof
* r particles relative to the background hydrodynamic flow.
R R The previous equations can be written as
wherea; is the unit radial vector at the pointand O (x) is
the Heaviside function.

M, ,
We solve fory(r) with the boundary conditions R=AclH(N]i=re

v(r=A)=0, Ggr,0,¢;r'=A,0",¢")=0, (7) 5 5 a;, 3R
My=M—-A“——R?| bg 575X b3+aSA
G, being the Green function of the Laplacian operator in K
spherical coordinates. R3/b
On the surface of the domain we obtain +— ESJras (12

It appears that the hydrodynamic effects are totally included
in an additional contribution to the transport coefficient.

The limit A>1 corresponds to a regime dominated by
hydrodynamics: we then expect to recover the scalngt
®) [6]. In particular, as numerically shown in Rd2], upon
increasing\ one should have a crossover from a diffusion-
dominated growtiR~t*® to the hydrodynamic linear growth
R~t.

For an infinite sample X —o°) one obtains

a
bs+

v(R)=— ES

R
bs+ asK

3R
C2A

A !
[1(p)], g R

*

We then integrate the equation of motion ferover a
regionS,, covering the interface betwed®— e and R+ e.
The quasistatic approach amounts to assumingghattime
dependent according 9g()(r) = ¢(r —R(t)) [r #R(1)].

Following Refs.[10,11], we approximatepg)(r) with 1/1 1 (Ac)?
the equilibrium value; inside the bubble and with the static R= 2d0v”(ca)—<— — —) -2 doR?
solution outside if g (r)=¢(r) for r>R+€]. The aver- RiRy R 37*
age ofpr becomes c 1 1 1
X (E d_o + ﬁ + R_Cr , (13

<<F;R>SE: - R<<P§g>s,f477'Rzll?Ac.
where R,=2Ac/c..dy. Clearly Eg.(13) reduces to the

Similarly we get Lifshitz-Slyozov equatior{8] for A=0. It is then obvious
that starting fromh =0 one goes from &~t* behavior to
(V-(orv))s =—4mR% (R)Ac. the linear behavior for large enough

For the previously mentioned reasons, here the effective
transport coefficienM y has no definite sign. In particular at

We point out that the contribution fropr(V - v))s_can be R=R we haveM,,=0:

disregarded in the previous average; in fact, siNce is

continuous across the interface, this ternOi&e). \/1 Ac\? ) Ac dg) , 1Ac
Upon averaging the right side term of the equation for the a\¢c, dot+{ 1+ C. Ry Is—3 c_ado
order parameter we obtain R= Ac d , (14
0
1+ —=—
. M , Coa Ry
R=1cls(D]i—re+Av(R), €)

wherel = \3M */(\%c,Ac). Notice thatR increases with
R, and has a finite limit foR,,— . The dynamics is char-

acterized by the two stationary solutiofs and R, the
smallest one being always unstable.

) 1 A n9
[w(D];_ge=V"(Ca)g(8Cs—bCa)—p- (10 WheneverR<R<R, the pure-phase fluctuations of size
R are suppressed, while f®<R<R(,, they tend to grow;

In the right-hand side of Eq(9) the first term represents in particular, wherR<R<R,, one has
(apart from the signthe velocity of 8 particles entering the
2 0o Ca>

where

bubble, driven by diffusion. The second term is the global 5
velocity of the mixed fluid, evaluated at the interface; for §)‘ % AcC
infinite systems, it is opposite to the gradient of the chemical g
potential[see Eq.(8)], as it must be, since it describes the This is consistent with the result obtained by Sigigi# and
Corresponding Stationary flux. SChematica”y we have With successive Sca"ng ana|ys®fsl[2,7]) as well as nu-
_ merical estimategl]. These scaling results ith=3 are well
R=—(vg) chemt NV nyqr- 11 known, but we point out that here they are obtained from an

R~ (15
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analytic solution based on a radial, compressible flow over &otice that thez dependence factors out both from the La-
compact domain, at odds with the standard arguments, baseggangian derivative and from the chemical source term.
on transversal surface waves on extended domains. It turns out that agailV - v is continuous across the inter-

Let us summarize the cage< <R, whenR> R, R=R, face, so that the incompressibility condition does not modify
one hasR~t3, while whenR<R<R,,, R=R,,, one has the equation foR(t), which has the forn{12), with
R~t. Similarly, in the regime Rcr<R_ one finds for

e 1 1
Ry<R<R a growth crossover fronR~t3 to R~t; this [(p)],—g+=V"( a)§(5cx—50a)|n(A/R) (21)
regime can be reached by a strong forcing at the boundary
and for large enougM 7*/\2. and

IV. CYLINDRICAL SYMMETRY Ac A ac b, R?
My=M—-A2—R?/In=| b+ = | — =+ — (b +a,)
We examine now the dynamics of a cylindrical domain 27" R 2 2 2A2
having radiusR, under the same physical conditions of the )
previous case. _ & 1 _{1— R_ (22)
The solution ofAu=0 is, for p>R, 4 In(A/R) A2
o(p)= (A/R) InA + b, (16) It is easily verified that in the purely two-dimensional case,

in the absence of hydrodynamic effects, one obtains exactly
this equatlon withh =0, provided thatA is finite; the limit
whereA is now the horizontal radius of the system, whichin , givesR=0. Notice that instead in the present context
the z direction extends to infinity. The excess concentrationy,. jimit A —s oo gi\./es a nontrivial result:

éc, at the interfacep=R can be determined as for the

GIbbS -Thompson relation: o )\ZV"(Ca) Aeri? 1 1 . ZCa 1 1 1
= — _— —_ —+ —
do 2y DONIR TRIM%Acd, TR R,
From the boundary conditions at=R andp= A one obtains with R,,=(Ac/éc.,)dy. Hence for the infinite system the hy-
the coefficientsa, andby : drodynamic modes are the only surviving source of the dy-
namics.
a.=oéc,— 6c,, b.=c,+dc,. (18) We point out that the stability is modified with respect to
R L the Lifshitz-Slyozov case, as well as the scaling behavior. A
We determiney from the equatiomv=\f by letting comprehensive description of the time evolution Rf,
. . . . would involve a statistical analysis for an assembly of co-
f(n="f(p)a,, v(r)=v(p)a,, lumnar domains, including a global conservation law. We

limit the treatment to the absence of forcing at the boundary,

R , 1 corresponding tdR,— . In this case, for finiteR, one ob-
f(P)=0(p—R)_Tu(p)]) g e(p), tains ¢
=A)= 1,0 c,
v(p=A)=0, (19 RN(_Az__> (24)
2 g Ac

whereé,; is the unit radial vector. The result at the interface

is This confirms known results, but, as previously pointed out,
the mechanism is based on longitudinal excitations, while in

R)— 2 | byt o2 ac & Ref. [6] a pressure gradient parallel to the axis of the tube
v(R)= n 2 2 was assumed, involving transverse modes.
In a finite system, wherR is small enough, there is a
R? a. R? regime in which the hydrodynamic effects are dominated by
+ ?(bﬁ ac)—m 1- el (200 particle diffusion; we obtain, in such a situation,
As in the previous case we average over a regiorcover- R~ ; (25)
ing the interface. We have R?In(A/R)
- - : Consistently with the Lifshitz-Slyozoy8] law R~t'3 at
(er)c,=— RWR)CE:ZWRRACJ dz largerR we get instead a crossover to a linear growth.
and similarly V. QUASI-TWO-DIMENSIONAL CASE

. - We consider the dynamics of a pure-phase disk in a cy-
<V'(¢Rv)>cs__27TRU(R)ACf dz lindrical system with radius\ and vertical thicknest<A.
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While in the previous case the limit—o gave a nonzero We start with the static solutiog(p) given by Eq.(15),
hydrodynamic velocity, here both the chemical velocity andand we take the Green function to be zero together with the
the hydrodynamic velocity tend to zero whenevkr— hydrodynamic velocity on the boundary. The Green function

with finite |. Ge(x,x';1) is given by[12]
|
.. 4 S o1 cogn(6— 6’ ™z ™z’ '
GX Xih)== 5 X > — o sin( )sin( )Jm( ym'sp)am( Ym.sP )
w3 A2 =0 n's=1 €m 2 n Ym,s l I A A
‘]m+1(7m,s) |_ + A
(26)
whereey=2, em—l if m#0, andy, s are the zeroes of the Bessel functi@y.
Upon Iettmgv(x) u(p,z)ap one has
4N L 1 [mnzy [@nzZ'\ _[yisp) [visP'|,
U(P:Z)_ 3|A2.f dz' f dp P 2 2+ Y1is 2 °In( | >SIn( | )‘]1( A )‘]1( A )f(P ) (27)
I5(y1s) A
|
The average/(R)=(1/I)f{)d2v(R,z) can be written in the 2(Ac)2 Ca do
V(R) = — 16 LR[,u(p)]’ Jl dyE (n y: R) meaning that a length = \24M 7* /(A 2c ,Ac) separates two
A p* R™ Jria A regimes: (@) 1=1., where My<0 and R, is the unique
(stable zero of R; (b) I<I., whereR has two zeroesR.,
—Iny b 28 andR:
X Aein(riA) TP (28) '
2
where the prime means that the sum extends over odd values R= Og ! ) (33
of n, andS has the following form: Cq 1212
R S R/IA)J An interesting situation holds in cagb), where the evolu-
(n y >= > (r1p . )2 ul 7;1,py)2 . (29 tion equation has the form
p=1 _o 1p
sina 7] +(25]
2 A femvro A P 1)1 1) 1
()b ~2RIR T R/\Ry R/inAR)”

It is found thatS(n,y;R/A) can be exactly summgd3], (34

( R) , ™ (i m(A/)N(RIA))
nyix|=-A

2 I,Gm(ATD)N) Independently of the relative magnitude Bf, and R, the

largest zero is always unstable. As a consequence, the do-

A A mains are growing in the two regions external to the roots.
x| J1 'WTn)Yl('WT”y) From Eq.(34) it is found that wheneveR<R,,R, the
growth law is
. A . A
-J; i -ny Y, b Nl (30 1
~———. 3
R3In(A/R) (39

In the limit /A<1 one approximates the Bessel functions
with their asymptotic behavior; in E¢28) we first integrate

in dy and then sum oven, thus finally obtaining It is easily verified that, ab— 0, the evolution equatio(84)

reduces to the two-dimensional case without hydrodynamic
effects.
It should be noticed that, whdr<l., A is finite and the
2 ! 1 (o]
247" ITulp)]r+(ac+ Do) (31) system is not forced from the boundargc(,=0), a stable

configuration of pure phase disks with radiRsis expected

Hence the final result for the effective transport coefficientfrom Eq. (34); R depends on the scales of the system only
My is given by through the thicknes$ and tends to zero as—0. This

V(R)=—
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microphase separation is sustained by hydrodynamics: purédrn out to differ only through a numerical factor in the two
phase fluctuations would be damped in a static backgroundaseqsee Egs(15) and(24)]. In the limit of infinite system,
under such conditions. while with spherical symmetry both the diffusion-driven
The flow given by Eq(31) follows Darcy’s law with the  separation and the fluid velocity do contribute to the inter-
chemical potential in the role of an effective pressure, and &ace dynamics, in the cylindrical symmetry case only the
coefficient of permeability proportional 46 and to the con- latter one survives. A second relevant difference, related to
centratione. In general the flow depends on the size of thethe previous point, is that while in the cylindrical caRe0
system, while the chemical velocity is merely proportional tois always unstable, in the spherical case there is a character-
the pressure gradient: in particular, this implies that the dyistic threshold below which pure-phase fluctuations are de-
namics of infinitely long tubular domains is only dependentpressed and above which they grow towards spinodal de-
on hydrodynamicgsee Eq.(23)]. In the monolayer case, a composition.
stable disklike solution is made possible by thR behavior The case of a laminar system shows a peculiar behavior:
of the concentratiorp at the interface: this factor, multiply- first of all a linear growth is never allowed, but this does not
ing the gradient of the chemical potential, makesmean that hydrodynamics is not relevant. The most striking

Uhyar™ U chemfOr sSmall enoughR (R<R). In this regime the €ffect is the possibility of microdomain separation, the size

domain globally increases. Wha R the opposite oceurs, of such domains being determined by the thickness of the

so that the domain tends to shrink. This mechanism is inhib/@M€lla, the viscosity, and the transport coefficient. A new

ited in the spherical case since th&®behavior ofe is there scallng_ behavior is _found fgr small domt_auns, WhICh_ grow
multiplied by a~ R? factor coming from the inverse Laplac- according to the lavR~1/[R"In(A/R)]. In his renormaliza-

ian [see Eq(12)]: as a result, the value & corresponding tion group(RG) theory of phase—olrgenng kinetics, Brgy]

{0 Upyar=UchemS always unstable. Similarly for a thick film found in the Hele-Shaw cell aR~t™"behavior correspond-
(I>1,) the hydrodynamic flow is always larger than the i to the coalescence regime; we believe that the correspon-

chemical potential, so that qualitatively everything goes as iffénce with our resulisee Eq.(35)] is merely coincidental,
Sec. IV. since we are considering strictly deterministic equations and

WheneveR= R,(0)<o the dynamics becomes very in- coalescence is not accesgble within the present treatment.
N~ - On the other hand, we find that large domains follow the
volved, and only within a statistical treatment can one deter; .., . . .
e th d T . Lifshitz-Slyozov behavior, apart from a logarithmic correc-
T e e e SaCloR () i ton: R~ RN(AR). We point out ha s behavir s
P 9 y consistent with Bray’s RG theory, in that actually Ba-t*®

Slyozov case, which corresponds hereRte 0. One can es-  growth is predicted for off-critical quench, when the domains

timate the growth law foR<R,<R as stabilize into cylindrical symmetry. We stress that the behav-
ior R~t?in d=2, as found by San Miguadt al. [14] and
R 1 confirmed by Bray[7], is out of reach within our context.

R2n(A/R) Our results were derived with irrotational, compressible

velocity fields. In general relaxing the incompressibility con-
This confirms the scaling law already obtained in the cylin-dition does not seem to modify the scaling behavior. The
drical case under similar conditions. main feature of our approach is to consider a steady state

In the purely two-dimensional case, by analyzing the staflow generated by a specific chemical potential source: this

bility of a strip, San Miguekt al.[14] concluded that a linear makes our treatment intrinsically nonlinear, so that the flow
growth R~t cannot be found. They further pointed out that is not merely determined by the boundary conditions, but is
their result should not be taken for granted in the case oforced by a given configuratiop. The physical context here
monolayers; as a matter of fact, in our analysis we confirnincludes phase separation in binary gases having a miscibil
the absence of linear behavior. Unfortunately, since we agty gap, such as helium-hydrogen, helium-nitrogen, and
sumev =0 on the boundary, we cannot follow the hydrody- neon-xenori5,15]. A steady state compressible flow can also
namical effects in the limit—0. be found in liquid motion through porous media, where the

medium can both absorb and relax material.

VI. CONCLUSIONS
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