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Hydrodynamic effects in phase separation: An explicit solution approach

Mariapia Riva* and Vincenzo Gino Benza†

Dipartimento di Fisica, Universita` degli Studi di Milano, INFM, Unita` di Milano,
and INFN, Sezione di Milano, via Celoria 16, 20133 Milano, Italy

~Received 12 February 1997; revised manuscript received 31 July 1997!

We study the influence of hydrodynamic modes on phase separation by modeling pure-phase domains with
kinks. The velocity field, determined adiabatically in terms of the thermodynamic source, describes a steady
state compressible flow. We consider spherical, columnar, and disklike domains. In the former two cases, we

obtain crossover from theṘ;1/R2 law to theR;t law as in the incompressible case. The growth of columnar
domains is dominated by hydrodynamics, while for spherical domains we find competition between hydrody-
namics and particle diffusion: this competition determines a threshold in size for the fluctuations, i.e., only
large enough fluctuations can initiate the spinodal decomposition. We finally study disklike domains in a

quasi-two-dimensional system and obtain, for small radii, the growth lawṘ;1/@R3ln(L/R)#, while for large

radii Ṙ;1/@R2ln(L/R)#. We find that stable microdomains can be formed, whose size is fixed by the thickness
of the lamella and by the parameters of the fluid~e.g., viscosity, transport coefficient, etc.!.
@S1063-651X~97!02712-8#

PACS number~s!: 05.70.Fh, 05.70.Ln, 64.60.My, 64.75.1g
lin
it
te
u

o
ai
a
o

n.
oc
ed
th
on
ay

ic
t i

o
h
th
ic
bl
g

c
vi
ns
an

ary,
ex-

av-
IV
m
ble
ed

ing
e

th

-
de-
ity,

tion
rn of
ons

ied
el-
I. INTRODUCTION

The influence of hydrodynamics on phase separation
binary mixtures has been the object of numerical@1–5# as
well as analytical works based on dimensional and sca
analysis@6,7#. We approach the problem in terms of explic
analytic solutions of the dynamics of the order parame
representing the concentration, and the fluid velocity. O
approach is an extension of the Lifshitz-Slyozov analysis@8#
to include the hydrodynamic contribution: we obtain an ev
lution equation for the size of an isolated pure-phase dom
The velocity field is determined in the adiabatic approxim
tion, meaning that the viscous relaxation occurs over sh
times with respect to the times scales of phase separatio
this way we disregard memory effects; in general the vel
ity of the fluid is consistent with the stationary flow impos
by the quasistatic chemical potential. The dynamics of
interface results from the competition between the diffusi
dominated dynamics~single type pure-phase molecules, s
B, diffuse within the melt towards the domain! and the glo-
bal motion of the melt, described by the hydrodynam
modes. We consider an off-critical quench, i.e., the mel
assumed to be close to the equilibrium concentration
phaseA: the free energy density is then approximated wit
quadratic term. It will be shown that as a consequence
transverse part of the velocity decouples from the chem
potential. Our solutions refer to potential, compressi
flows; we discuss in the following how the kinetic orderin
is influenced by relaxing the incompressibility condition.

The paper is organized as follows. In Sec. II we introdu
the basic equations and discuss the separation of the Na
Stokes equations in the static limit in longitudinal and tra
versal parts. In Sec. III we consider a spherical domain
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show that, in the absence of a forcing term at the bound
a characteristic radius separates collapsing domains from
panding ones. The crossover from a Lifshitz-Slyozov beh
ior to the hydrodynamic behavior is also obtained. In Sec.
we study a columnar defect; in the limit of infinite syste
only the hydrodynamic contribution survives and a sta
time-dependent solution is found. This solution is sustain
only by the forcing at the boundary: in the absence of forc
all columnar defects grow with a linear law. In Sec. V w
consider a disk in a~quasi-two-dimensional! laminar system:
we find here a deviation from the Lifshitz-Slyozov grow
for small domains~a slower growth! and for large domains a
logarithmic correction to the Lifshitz-Slyozov law. More in
terestingly perhaps, we determine a characteristic radius,
pendent on the thickness of the lamella and on the viscos
where the domains stabilize. If one disregards the interac
between the domains, the system separates into a patte
microdomains. Section VI is dedicated to some conclusi
and to comparison with previous works.

II. BASIC EQUATIONS

Phase-separation dynamics of binary fluids will be stud
here in terms of explicit solutions, based on kinklike mod
ing of the pure-phase domains.

Our starting point is the so-calledH model @9#, in its
deterministic version:

r0F ]vW

]t
1~vW •¹W !vW G52¹W p1hDvW 1S z1

1

3
h D¹W ~¹W •vW !

2lw¹W m,
~1!

]

]t
w1l¹W •~wvW !5MDm.
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7002 56MARIAPIA RIVA AND VINCENZO GINO BENZA
Herew(xW ,t) is a scalar field describing the concentration
one of the two components,vW (xW ,t) is the fluid velocity,r0

the average mass density,p(xW ,t) the pressure, andm@w# the
chemical potential. The coefficientsh and z are the shear
and bulk viscosity,l the coupling of the concentration wit
the velocity, andM a transport coefficient, here assumed
be constant. We study the scaling behavior during ph
separation in the deterministic case: it was numerica
shown that noise is irrelevant in this regime ind52 and
d53 @3#. To the best of our knowledge, the noise term ge
erates a peculiar scaling in monolayers in the coalesce
regime@7#, which is far from the present approach.

We examine time scales of the order of the pha
separation dynamics and large with respect to the trans
viscous relaxation times of the velocity field: in other word
we study the system in the adiabatic approximat
(d/dt)vW 50W , where the velocity ‘‘instantaneously’’ follows
the dynamics of the order parameter. This approximatio
particularly reasonable in proximity to the phase separat
where the system undergoes critical slowing down, but h
we will use it in studying the evolution after quenching b
low the transition temperature. The experimental releva
of this adiabatic regime has been discussed by Koga
Kawasaki@4#, in their numerical study of spinodal decomp
sition.

It is useful to project the residual Navier-Stokes equat
into the transverse and longitudinal compone
(vW 5vW T1vW L , ¹W •vW T50, ¹W 3vW L50W ):

2¹W p1h* DvW L2l~w¹W m!L50W ,

hDvW T2l~w¹W m!T50W ,

whereh* 5 4
3 h1z. We point out that whenever the chemic

potential m is a polynomial inw, m5( i 51
k aiw

i ~this is a
reasonable approximation when the melt is close to an e
librium configuration, so that one can disregard inm the
kinetic term!, the two equations decouple:

h* DvW L5¹W p1l¹W S (
i 51

k
i

i 11
aiw

i 11D ,

hDvW T50W .

Notice that if one enforces the incompressibility conditi
¹W •vW 50, one simply ends up with a solution for the pressu
as a function of the potential, whilevW T is completely inde-
pendent of the chemical potential. In such a case the prob
reduces to one for a scalar in a given external static velo
field with appropriate boundary conditions at infinity and
the interface. Here, we disregard the variation in space
pressure and include the effect of the source in the solu
for the irrotational fieldvW L , which will be uniquely deter-
mined by imposingvW L50W on the boundary of the system.

For more generalm one can again determine the veloci
field by simply inverting the Laplacian; indeed, by settin
uW 5h* vW L1hvW T one obtains
f
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DuW 5lw¹W m1¹W p.

Starting from the solutions ofDm50, valid in the static
limit, we will assume kinklike geometries and determine
dynamical equation for the size of such kinks in a quasist
approach. The procedure follows the lines of the derivat
given by Langer@10# of the seminal paper by Lifshitz an
Slyozov @8#.

III. SPHERICAL SYMMETRY

We first consider a spherical domain having radiusR in a
pure phase, sayB, surrounded by the mixed phase, assum
to be close to theA-phase equilibrium concentrationca .
Recalling that m(xW ,t)5dF@w#/dw(xW ,t), we assume
m(xW ,t)5V9(ca)w(xW ,t), whereV(w) is the potential contri-
bution to the free energy density.

The solution ofDm50 is given, forr .R, by

w~r !5as

R

r
1bs , ~2!

with boundary conditions

w5H ca1dca if r 5R

ca1dc` if r 5L,

whereL is the radius of the system. The quantitydca is the
excess concentration at the boundary of the domain, give
the Gibbs-Thompson relation:

dca52
d0

R
Dc, ~3!

where Dc5cb2ca , d05sx̃ /(Dc)2, s being the surface
tension andx̃ the susceptibility. From the boundary cond
tions one determines the coefficients of the static solutio

as5
L

L2R
~dca2dc`!, ~4!

bs5ca1
L

L2R
dc`2

R

L2R
dca . ~5!

We solve the equations forvW under the assumptions¹W p50W

andvW T50W :

DvW 5l fW ,

fW5
1

h*
w¹W m.

Notice thatw(r ) parametrically depends on the radius of t
sphereR. From the symmetry and the equationDm50, one
has

fW~rW !5 f ~r !aW rW , vW ~rW !5v~r !aW rW ,
~6!
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f ~r !5Q~r 2R!
R2

h*
@m~r !# r 5R18

1

r 2
w~r !,

whereaW rW is the unit radial vector at the pointrW andQ(x) is
the Heaviside function.

We solve forv(r ) with the boundary conditions

v~r 5L!50, Gs~r ,u,f;r 85L,u8,f8!50, ~7!

Gs being the Green function of the Laplacian operator
spherical coordinates.

On the surface of the domain we obtain

v~R!52
l

3h*
@m~r!#r5R18 R2Fbs1

as

2
2

3

2

R

LS bs1as

R

L D
1

R3

L3S bs

2
1asD G . ~8!

We then integrate the equation of motion forw over a
region Se , covering the interface betweenR2e and R1e.
The quasistatic approach amounts to assuming thatw is time
dependent according towR(t)(r )5w„r 2R(t)… @rÞR(t)#.

Following Refs. @10,11#, we approximatewR(t)(r ) with
the equilibrium valuecb inside the bubble and with the stat
solution outside it@wR(t)(r )5w(r ) for r .R1e#. The aver-
age ofẇR becomes

^ẇR&Se
52Ṙ^wR8 &Se

.4pR2ṘDc.

Similarly we get

^¹W •~wRvW !&Se
.24pR2v~R!Dc.

We point out that the contribution from̂wR(¹W •vW )&Se
can be

disregarded in the previous average; in fact, since¹W •vW is
continuous across the interface, this term isO(e).

Upon averaging the right side term of the equation for
order parameter we obtain

Ṙ5
M

Dc
@m~r !# r 5R18 1lv~R!, ~9!

where

@m~r !# r 5R18 5V9~ca!
1

R
~dc`2dca!

L

L2R
. ~10!

In the right-hand side of Eq.~9! the first term represent
~apart from the sign! the velocity ofb particles entering the
bubble, driven by diffusion. The second term is the glo
velocity of the mixed fluid, evaluated at the interface; f
infinite systems, it is opposite to the gradient of the chem
potential @see Eq.~8!#, as it must be, since it describes th
corresponding stationary flux. Schematically we have

Ṙ52~vb!chem1lvhydr. ~11!
e

l

l

Notice that (vb)chem is always opposite to the gradient ofm:
hence the bubble growth is regulated by the velocity ofb
particles relative to the background hydrodynamic flow.

The previous equations can be written as

Ṙ5
MH

Dc
@m~r !# r 5R18 ,

MH5M2l2
Dc

3h*
R2Fbs1

as

2
2

3

2

R

LS bs1as

R

L D
1

R3

L3S bs

2
1asD G . ~12!

It appears that the hydrodynamic effects are totally includ
in an additional contribution to the transport coefficient.

The limit l@1 corresponds to a regime dominated
hydrodynamics: we then expect to recover the scalingR;t
@6#. In particular, as numerically shown in Ref.@2#, upon
increasingl one should have a crossover from a diffusio
dominated growthR;t1/3 to the hydrodynamic linear growth
R;t.

For an infinite sample (L→`) one obtains

Ṙ52d0V9~ca!
1

RS 1

Rcr
2

1

RD FM2l2
~Dc!2

3h*
d0R2

3S ca

Dc

1

d0
1

1

R
1

1

Rcr
D G , ~13!

where Rcr52Dc/dc`d0. Clearly Eq. ~13! reduces to the
Lifshitz-Slyozov equation@8# for l50. It is then obvious
that starting froml50 one goes from aR;t1/3 behavior to
the linear behavior for large enoughl.

For the previously mentioned reasons, here the effec
transport coefficientMH has no definite sign. In particular a
R5R̄ we haveMH50:

R̄5

A1

4S Dc

ca
D 2

d0
21S 11

Dc

ca

d0

Rcr
D l s

22
1

2

Dc

ca
d0

11
Dc

ca

d0

Rcr

, ~14!

wherel s5A3Mh* /(l2caDc). Notice thatR̄ increases with
Rcr and has a finite limit forRcr→`. The dynamics is char-
acterized by the two stationary solutionsR̄ and Rcr , the
smallest one being always unstable.

WheneverR,R̄,Rcr the pure-phase fluctuations of siz
R are suppressed, while forR̄,R,Rcr , they tend to grow;
in particular, whenR̄!R,Rcr one has

R;S 2

3
l2

s

h*

ca

DcD t. ~15!

This is consistent with the result obtained by Siggia@6#, and
with successive scaling analyses~Refs.@2,7#! as well as nu-
merical estimates@1#. These scaling results ind53 are well
known, but we point out that here they are obtained from
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7004 56MARIAPIA RIVA AND VINCENZO GINO BENZA
analytic solution based on a radial, compressible flow ove
compact domain, at odds with the standard arguments, b
on transversal surface waves on extended domains.

Let us summarize the caseR̄!Rcr : when R.R̄, R.R̄,
one hasR;t1/3, while when R̄<R,Rcr , R.Rcr , one has
R;t. Similarly, in the regime Rcr!R̄ one finds for
Rcr,R,R̄ a growth crossover fromR;t1/3 to R;t; this
regime can be reached by a strong forcing at the bound
and for large enoughMh* /l2.

IV. CYLINDRICAL SYMMETRY

We examine now the dynamics of a cylindrical doma
having radiusR, under the same physical conditions of t
previous case.

The solution ofDm50 is, for r.R,

w~r!5
ac

ln~L/R!
ln

L

r
1bc , ~16!

whereL is now the horizontal radius of the system, which
the z direction extends to infinity. The excess concentrat
dca at the interfacer5R can be determined as for th
Gibbs-Thompson relation:

dca5
d0

R
Dc. ~17!

From the boundary conditions atr5R andr5L one obtains
the coefficientsac andbc :

ac5dca2dc` , bc5ca1dc` . ~18!

We determinevW from the equationDvW 5l fW by letting

fW~rW !5 f ~r!aW rW , vW ~rW !5v~r!aW rW ,

f ~r!5Q~r2R!
R

h*
@m~r!#r5R18

1

r
w~r!,

v~r5L!50, ~19!

whereaW rW is the unit radial vector. The result at the interfa
is

v~R!52
lR2

2h*
@m~r!#R18 F ln

L

RS bc1
ac

2 D2
bc

2

1
R2

2L2
~bc1ac!2

ac

4ln~L/R!S 12
R2

L2D G . ~20!

As in the previous case we average over a regionCe cover-
ing the interface. We have

^w Ṙ&Ce
52Ṙ^wR8 &Ce

.2pṘRDcE dz

and similarly

^¹W •~wRvW !&Ce
.22pRv~R!DcE dz.
a
ed

ry

n

Notice that thez dependence factors out both from the L
grangian derivative and from the chemical source term.

It turns out that again¹W •vW is continuous across the inte
face, so that the incompressibility condition does not mod
the equation forR(t), which has the form~12!, with

@m~r!#r5R18 5V9~ca!
1

R
~dc`2dca!

1

ln~L/R!
~21!

and

MH5M2l2
Dc

2h*
R2F ln

L

RS bc1
ac

2 D2
bc

2
1

R2

2L2
~bc1ac!

2
ac

4

1

ln~L/R!S 12
R2

L2D G . ~22!

It is easily verified that in the purely two-dimensional cas
in the absence of hydrodynamic effects, one obtains exa
this equation withl50, provided thatL is finite; the limit
L→` givesṘ50. Notice that instead in the present conte
the limit L→` gives a nontrivial result:

Ṙ52l2
V9~ca!

4h*
~Dc!2d0

2S 1

Rcr
2

1

RDRS 2
ca

Dc

1

d0
1

1

R
1

1

Rcr
D ,

~23!

with Rcr5(Dc/dc`)d0. Hence for the infinite system the hy
drodynamic modes are the only surviving source of the
namics.

We point out that the stability is modified with respect
the Lifshitz-Slyozov case, as well as the scaling behavior
comprehensive description of the time evolution ofRcr
would involve a statistical analysis for an assembly of c
lumnar domains, including a global conservation law. W
limit the treatment to the absence of forcing at the bounda
corresponding toRcr→`. In this case, for finiteR, one ob-
tains

R;S 1

2
l2

s

h*

ca

DcD t. ~24!

This confirms known results, but, as previously pointed o
the mechanism is based on longitudinal excitations, while
Ref. @6# a pressure gradient parallel to the axis of the tu
was assumed, involving transverse modes.

In a finite system, whenR is small enough, there is a
regime in which the hydrodynamic effects are dominated
particle diffusion; we obtain, in such a situation,

Ṙ;
1

R2ln~L/R!
. ~25!

Consistently with the Lifshitz-Slyozov@8# law R;t1/3, at
largerR we get instead a crossover to a linear growth.

V. QUASI-TWO-DIMENSIONAL CASE

We consider the dynamics of a pure-phase disk in a
lindrical system with radiusL and vertical thicknessl !L.
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While in the previous case the limitL→` gave a nonzero
hydrodynamic velocity, here both the chemical velocity a
the hydrodynamic velocity tend to zero wheneverL→`
with finite l .
lu

ns

n

d
We start with the static solutionw(r) given by Eq.~15!,

and we take the Green function to be zero together with
hydrodynamic velocity on the boundary. The Green funct
Gc(xW ,xW8; l ) is given by@12#
Gc~xW8,xW ; l !52
4

p3lL2 (
m50

`

(
n,s51

`
1

em

cosm~u2u8!

Jm11
2 ~gm,s!F S n

l D
2

1S gm,s

pL D 2GsinS pnz

l D sinS pnz8

l D JmS gm,sr

L D JmS gm,sr8

L D ,

~26!

wheree052, em51 if mÞ0, andgm,s are the zeroes of the Bessel functionJm .
Upon lettingvW (xW )5v(r,z)aW r one has

v~r,z!52
4l

p3lL2E0

l

dz8E
0

L

dr8r8 (
n,s51

`
1

J2
2~g1,s!F S n

l D
2

1S g1,s

pL D 2GsinS pnz

l D sinS pnz8

l D J1S g1,sr

L D J1S g1,sr8

L D f ~r8!. ~27!
do-
ts.

mic

nly
The averageV(R)5(1/l )*0
l dzv(R,z) can be written in the

form

V~R!52
16

p4L

l

h*
R@m~r!#R18 E

R/L

1

dy(
n

8
1

n2
SS n,y;

R

L D
3Fac

lny

ln~R/L!
1bcG , ~28!

where the prime means that the sum extends over odd va
of n, andS has the following form:

SS n,y;
R

L D5 (
p51

`
J1~g1,pR/L!J1~g1,py!

J2
2~g1,p!F S n

l D
2

1S g1,p

pL D 2G . ~29!

It is found thatS(n,y;R/L) can be exactly summed@13#,

SS n,y;
R

L D52L2
p3

4

J1„ip~L/ l !n~R/L!…

J1„ip~L/ l !n…

3FJ1S ip
L

l
nDY1S ip

L

l
nyD

2J1S ip
L

l
nyDY1S ip

L

l
nD G . ~30!

In the limit l /L!1 one approximates the Bessel functio
with their asymptotic behavior; in Eq.~28! we first integrate
in dy and then sum overn, thus finally obtaining

V~R!52
l

24h*
l 2@m~r!#R18 ~ac1bc!. ~31!

Hence the final result for the effective transport coefficie
MH is given by
es

t

MH5M2l2
~Dc!2

24h*
l 2S ca

Dc
1

d0

R D , ~32!

meaning that a lengthl c5A24Mh* /(l2caDc) separates two
regimes: ~a! l> l c , where MH,0 and Rcr is the unique
~stable! zero of Ṙ; ~b! l , l c , whereṘ has two zeroes,Rcr

and R̄:

R̄5d0

Dc

ca

l 2

l c
22 l 2

. ~33!

An interesting situation holds in case~b!, where the evolu-
tion equation has the form

Ṙ5MV9~ca!d0
2~Dc!2

ca

l 2

l c
2

1

RS 1

R̄
2

1

RD S 1

Rcr
2

1

RD 1

ln~L/R!
.

~34!

Independently of the relative magnitude ofRcr and R̄, the
largest zero is always unstable. As a consequence, the
mains are growing in the two regions external to the roo

From Eq. ~34! it is found that wheneverR,Rcr ,R̄, the
growth law is

Ṙ;
1

R3ln~L/R!
. ~35!

It is easily verified that, asl→0, the evolution equation~34!
reduces to the two-dimensional case without hydrodyna
effects.

It should be noticed that, whenl , l c , L is finite and the
system is not forced from the boundary (dc`50), a stable
configuration of pure phase disks with radiusR̄ is expected
from Eq. ~34!; R̄ depends on the scales of the system o
through the thicknessl and tends to zero asl→0. This
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microphase separation is sustained by hydrodynamics: p
phase fluctuations would be damped in a static backgro
under such conditions.

The flow given by Eq.~31! follows Darcy’s law with the
chemical potential in the role of an effective pressure, an
coefficient of permeability proportional tol 2 and to the con-
centrationw. In general the flow depends on the size of t
system, while the chemical velocity is merely proportional
the pressure gradient: in particular, this implies that the
namics of infinitely long tubular domains is only depende
on hydrodynamics@see Eq.~23!#. In the monolayer case,
stable disklike solution is made possible by the 1/R behavior
of the concentrationw at the interface: this factor, multiply
ing the gradient of the chemical potential, mak

vhydr.vchem for small enoughR (R,R̄). In this regime the
domain globally increases. WhenR.R̄ the opposite occurs
so that the domain tends to shrink. This mechanism is inh
ited in the spherical case since the 1/R behavior ofw is there
multiplied by a;R2 factor coming from the inverse Laplac
ian @see Eq.~12!#: as a result, the value ofR corresponding
to vhydr5vchem is always unstable. Similarly for a thick film
( l . l c) the hydrodynamic flow is always larger than th
chemical potential, so that qualitatively everything goes a
Sec. IV.

WheneverR̄,Rcr(0),` the dynamics becomes very in
volved, and only within a statistical treatment can one de
mine the steady state: sinceR̄ acts as an attractor,Rcr(t) is
not a priori allowed to grow indefinitely as in the Lifshitz
Slyozov case, which corresponds here toR̄50. One can es-
timate the growth law forR̄,Rcr,R as

Ṙ;
1

R2ln~L/R!
.

This confirms the scaling law already obtained in the cyl
drical case under similar conditions.

In the purely two-dimensional case, by analyzing the s
bility of a strip, San Miguelet al. @14# concluded that a linea
growth R;t cannot be found. They further pointed out th
their result should not be taken for granted in the case
monolayers; as a matter of fact, in our analysis we confi
the absence of linear behavior. Unfortunately, since we
sumev50 on the boundary, we cannot follow the hydrod
namical effects in the limitl→0.

VI. CONCLUSIONS

We determined time evolution equations for pure-ph
domains, including the hydrodynamic effects. Our expli
solutions in the case of spherical or columnar domains c
firm a crossover from theR;t1/3 to theR;t law. We also
explicitly determine the coefficients of the linear law, whic
s.
re-
d

a

-
t

-

in

r-

-

-

t
f

s-

e
t
n-

turn out to differ only through a numerical factor in the tw
cases@see Eqs.~15! and~24!#. In the limit of infinite system,
while with spherical symmetry both the diffusion-drive
separation and the fluid velocity do contribute to the int
face dynamics, in the cylindrical symmetry case only t
latter one survives. A second relevant difference, related
the previous point, is that while in the cylindrical caseR50
is always unstable, in the spherical case there is a chara
istic threshold below which pure-phase fluctuations are
pressed and above which they grow towards spinodal
composition.

The case of a laminar system shows a peculiar behav
first of all a linear growth is never allowed, but this does n
mean that hydrodynamics is not relevant. The most strik
effect is the possibility of microdomain separation, the s
of such domains being determined by the thickness of
lamella, the viscosity, and the transport coefficient. A n
scaling behavior is found for small domains, which gro
according to the lawṘ;1/@R3ln(L/R)#. In his renormaliza-
tion group~RG! theory of phase-ordering kinetics, Bray@7#
found in the Hele-Shaw cell anR;t1/4 behavior correspond
ing to the coalescence regime; we believe that the corres
dence with our result@see Eq.~35!# is merely coincidental,
since we are considering strictly deterministic equations
coalescence is not accessible within the present treatm
On the other hand, we find that large domains follow t
Lifshitz-Slyozov behavior, apart from a logarithmic corre
tion: Ṙ;1/@R2ln(L/R)#. We point out that this behavior is
consistent with Bray’s RG theory, in that actually anR;t1/3

growth is predicted for off-critical quench, when the domai
stabilize into cylindrical symmetry. We stress that the beh
ior R;t1/2 in d52, as found by San Miguelet al. @14# and
confirmed by Bray@7#, is out of reach within our context.

Our results were derived with irrotational, compressib
velocity fields. In general relaxing the incompressibility co
dition does not seem to modify the scaling behavior. T
main feature of our approach is to consider a steady s
flow generated by a specific chemical potential source:
makes our treatment intrinsically nonlinear, so that the fl
is not merely determined by the boundary conditions, bu
forced by a given configurationw. The physical context here
includes phase separation in binary gases having a misc
ity gap, such as helium-hydrogen, helium-nitrogen, a
neon-xenon@5,15#. A steady state compressible flow can al
be found in liquid motion through porous media, where t
medium can both absorb and relax material.
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